Interactive Data Visualization

Tableau Calculations

João Moura Pires

Notice

- Author
- João Moura Pires (imp@fct.unl.pt)
- This material can be freely used for personal or academic purposes without any previous authorization from the authors, provided that this notice is maintained/kept.
- For commercial purposes the use of any part of this material requires the previous authorization from the authors.

Table of Contents

- Introduction
- Tableau Calculations

■ Level of Detail (LOD) expressionsTable Calculations

Interactive Data Visualization

Introduction

Drag \& Drop => Querying your data

\bigcirc		View Data: Cl
\checkmark Show aliases		
Class	Drive Train	Number of Records
Minivcan	RWD	1
Pickup	RWD	12
Wagon	RWD	7
Sports	RWD	36
Normal	RWD	54
Minivcan	FWD	16
Wagon	FWD	14
Sports	FWD	8
SUV	FWD	22
Normal	FWD	166
Minivcan	AWD	3
Pickup	AWD	12
Wagon	AWD	9
Sports	AWD	5
SUV	AWD	38
Normal	AWD	25
Summary	Full Data	

Drag \& Drop => Querying your data

Drag \& Drop => Querying your data

Drag \& Drop => Querying your data

Interactive Data Visualization

Tableau Calculations

Calculations

Why use calculations

- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.

Calculations

- Why use calculations
- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.
- When to use calculations (some examples)
- To segment data

Calculations

- Why use calculations
- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.
- When to use calculations (some examples)
- To segment data
- To convert the data type of a field, such as converting a string to a date.

Calculations

- Why use calculations
- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.
- When to use calculations (some examples)
- To segment data
- To convert the data type of a field, such as converting a string to a date.
- To aggregate data

Calculations

- Why use calculations
- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.
- When to use calculations (some examples)
- To segment data
- To convert the data type of a field, such as converting a string to a date.
- To aggregate data
- To filter results

Calculations

- Why use calculations
- To create new data from data that already exists in your data source
- Perform computations on your data to perform complex analyzes and add fields to your data source on your own and on the fly.
- When to use calculations (some examples)
- To segment data
- To convert the data type of a field, such as converting a string to a date.
- To aggregate data
- To filter results
- To calculate ratios

Types of calculations

- Basic expressions
https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_types.htm

FACULDADE DE
CIÊNCIAS E TECNOLOGIA

Types of calculations

- Basic expressions
- Calculation at source level of detail (a row-level calculation)
https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_types.htm

FACULDADE DE

Types of calculations

- Basic expressions
- Calculation at source level of detail (a row-level calculation)
- Calculation at the visualization level of detail (an aggregate calculation)
https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_types.htm

Types of calculations

- Basic expressions
- Calculation at source level of detail (a row-level calculation)
- Calculation at the visualization level of detail (an aggregate calculation)
- Level of Detail (LOD) expressions
- FIXED Level of detail - set of dimensions
- INCLUDE or EXCLUDE - set of dimensions
https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_types.htm

Types of calculations

- Basic expressions
- Calculation at source level of detail (a row-level calculation)
- Calculation at the visualization level of detail (an aggregate calculation)
- Level of Detail (LOD) expressions
- FIXED Level of detail - set of dimensions
- INCLUDE or EXCLUDE - set of dimensions
- Table calculations
- Are performed after the query returns and therefore can only operate over values that are in the query result set.
https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_types.htm

Basic expressions - row level calculation

Book ID	Book Name	Series	Year Released	Author
1	The Lion, the Whtch and the Wardrobe	The Chronicles of Narnia	1950	C. S. Lewis
2	Prince Caspian: The Return to Narnia	The Chronicles of Narnia The Voyage of the	The Chronicles of Darnia	1951
3	The Silver Chair	The Chronicles of Narnia	1953	C. S. Lewis
4	The Horse and His Boy	The Chronicles of Narnia	1954	C. S. Lewis
5	The Magician's	The Chronicles of	1955	C. S. Lewis
6	Nephew	Narnia	C. S. Lewis	
7	The Last Battle	The Chronicles of Narnia	1956	C. S. Lewis
8	Harry Potter and the Philosopher's Stone	Harry Potter	1997	C. S. Lewis
		J. K. Rowling		

Basic expressions - row level calculation

Book ID	Book Name	Series	Year Released	Author
1	The Lion, the Witch and the Wardrobe	The Chronicles of Narnia	1950	C. S. Lewis
2	Prince Caspian: The Return to Narnia	The Chronicles of Narnia Dawn Treader	1951	C. S. Lewis
3	The Silver Chair	The Chronicles of Narnia	1953	C. S. Lewis
4	The Horse and His Boy	The Chronicles of Narnia	1954	C. S. Lewis
5	The Magician's	The Chronicles of		
Nephew	1955	C. S. Lewis		
6	The Last Battle	The Chronicles of Narnia	1956	C. S. Lewis
7	Harry Potter and the Philosopher's Stone	Harry Potter	1997	C. S. Lewis
8	The K. Rowling			

Compute a new column with only the author's last name

```
SPLIT([Author], '.', 3 )
```

Author Last Name

Basic expressions - row level calculation

Book ID	Book Name	Series	Year Released	Author	Author Last
Name					

Compute a new column with
only the author's last name

```
SPLIT([Author], '.', 3 )
```

Author Last Name

Basic expressions - aggregate calculation

Book ID	Book Name	Series	Year Released	Author
1	The Lion, the Witch and the Wardrobe	The Chronicles of Narnia	1950	C. S. Lewis
2	Prince Caspian: The Return to Narnia	The Chronicles of Narnia	1951	C. S. Lewis
3	The Voyage of the Dawn Treader	The Chronicles of Narnia	1952	C. S. Lewis
4	The Silver Chair	The Chronicles of Narnia	1953	C. S. Lewis
5	The Horse and His Boy	The Chronicles of Narnia	1954	C. S. Lewis
6	The Magician's Nephew	The Chronicles of Narnia	1955	C. S. Lewis
7	The Last Battle	The Chronicles of Narnia	1956	C. S. Lewis
8	Harry Potter and the Philosopher's Stone	Harry Potter	1997	J. K. Rowling

To create a column that displays how many books are in each series

```
COUNT([Series])
```

Number of Books in Series at Series level of detail

Basic expressions - aggregate calculation

| Series | Number of Books in Series - at Series level of
 detail |
| :--- | :--- | :--- |
| The Chronicles of Narnia | 7 |
| The Chronicles of Narnia | |
| Harry Potter | |

To create a column that displays how many books are in each series

```
COUNT([Series])
```

Number of Books in Series at Series level of detail

Basic expressions - aggregate calculation

Basic expressions - aggregate calculation

To create a column that displays how many books are in each series

```
COUNT([Series])
```

Number of Books in Series at Series level of detail

Aggregate calculations are performed at the visualization level of detail

Level of Detail (LOD) expressions

Level of Detail (LOD) expressions

- Just like basic expressions, LOD expressions allow you to compute values at the data source level and the visualization level.

Level of Detail (LOD) expressions

■ Just like basic expressions, LOD expressions allow you to compute values at the data source level and the visualization level.

- However, LOD expressions give you even more control on the level of granularity you want to compute. They can be performed:
- at a more granular level (INCLUDE),

Level of Detail (LOD) expressions

■ Just like basic expressions, LOD expressions allow you to compute values at the data source level and the visualization level.

- However, LOD expressions give you even more control on the level of granularity you want to compute. They can be performed:
- at a more granular level (INCLUDE),
- a less granular level (EXCLUDE),

Level of Detail (LOD) expressions

■ Just like basic expressions, LOD expressions allow you to compute values at the data source level and the visualization level.

- However, LOD expressions give you even more control on the level of granularity you want to compute. They can be performed:
- at a more granular level (INCLUDE),
- a less granular level (EXCLUDE),
- or an entirely independent level (FIXED)

Level of Detail (LOD) expressions

Book ID	Book Name	Series	Year Released	Author	Series Launched
1	The Lion, the Witch and the Wardrobe	The Chronicles of Narnia	1950	C. S. Lewis	1950
2	Prince Caspian: The Return to Narnia	The Chronicles of Narnia	1951	C. S. Lewis	1950
3	The Voyage of the Dawn Treader	The Chronicles of Narnia	1952	C. S. Lewis	1950
4	The Silver Chair	The Chronicles of Narnia	1953	C. S. Lewis	1950
5	The Horse and His Boy	The Chronicles of Narnia	1954	C. S. Lewis	1950
6	The Magician's Nephew	The Chronicles of Narnia	1955	C. S. Lewis	1950
7	The Last Battle	The Chronicles of Narnia	1956	C. S. Lewis	1950
8	Harry Potter and the Philosopher's Stone	Harry Potter	1997	J. K. Rowling	1997
9	Harry Potter and Chamber of Secrets	Harry Potter	1998	J. K. Rowling	1997

wanted to compute when a book series was launched

```
{ FIXED [Series]:(MIN([Year Released]))}
```

```
Series Launched
```


Level of Detail (LOD) expressions

wanted to compute when a book series was launched

```
{ FIXED [Series]:(MIN([Year Released]))}
```

Series Launched

Level of Detail (LOD) expressions

Table calculations

- Table calculations allow you to transform values at the level of detail of the visualization only.
- The computation works on the data table that is used for the data visualization !

■ To compute the number of years since the author released their last book, you might use the following table calculation:

```
ATTR([Year Released]) - LOOKUP(ATTR([Year Released]), -1)
```

Number of Books in Series -
at Series level of detail

Table calculations

Table calculations

```
ATTR([Year Released]) - LOOKUP(ATTR([Year Released]), -1)
```


Choosing the Right Calculation Type

- Basic expression or table calculation?
- Question 1: Do you already have all the data values you need on the visualization?
- If the answer is yes: You can use a table calculation.
- If the answer is no: Use a basic calculation.

https://onlinehelp.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_understand_which.htm

Choosing the Right Calculation Type

■ Basic expression or Level of Detail (LOD) expression?
If you don't have all the data you need on the visualization, you need your calculation to be passed through to the data source. This means you must use a basic calculation or an LOD Expression.

If you answered no to question 1 ask yourself this:

Question 2: Does the granularity of your question match either the granularity of the visualization or the granularity of the data source?

If the answer is yes: Use a basic expression.

If the answer is no: Use a Level of Detail (LOD) expression.

Choosing the Right Calculation Type

- Basic expression or Level of Detail (LOD) expression?

Choosing the Right Calculation Type

- Table calculation or Level of Detail (LOD) expression?

Do you already have all the data values you need on the visualization?

- If the answer is Yes, then use a table calculation.
- If the answer is No, then ask yourself: Does the granularity of the question match either the granularity of the visualization or the granularity of the data source? If the answer is No, then use an LOD calculation.

Choosing the Right Calculation Type

- Table calculations only
- There are some scenarios where only a table calculation will do, including:
- Ranking
- Recursion (e.g. cumulative totals)
- Moving calculations (e.g. rolling averages)
- Inter-row calculations (e.g. period vs. period calculations)

Choosing the Right Calculation Type

Functions in tableau

- Take a look at:
https://onlinehelp.tableau.com/current/pro/desktop/en-us/functions.htm
- Numbers
- HEXBINX and HEXBINY
- ZN
- Strings
- SPLIT
- Logical
- IFF, Case, When
- IFNULL, ISNULL

Functions in tableau

- Take a look at:
https://onlinehelp.tableau.com/current/pro/desktop/en-us/functions.htm
- Aggregate
- ATTR
- COLLECT
- CORR, COVAR, COVARP
- MEDIAN, PERCENTILE
- STD, etc
- COUNT and COUNTD

Functions in tableau

- Take a look at:
https://onlinehelp.tableau.com/current/pro/desktop/en-us/functions.htm
- Table Calculation Functions
- https://onlinehelp.tableau.com/current/pro/desktop/en-us/
functions functions tablecalculation.htm
- FIRST(), INDEX(), LAST()
- LOOKUP(), PREVIOUS_VALUE
- RANK ... many
- RUNNING_..... many
- WINDOW_ many

Interactive Data Visualization

Level of Detail (LOD) expressions

Level of Detail (LOD) expressions

- Check this tutorial: Create Level of Detail Expressions in Tableau
- https://onlinehelp.tableau.com/current/pro/desktop/en-us/
calculations calculatedfields lod.htm
- Using the sample workbook - Sample-Superstore

Level of Detail (LOD) expressions: INCLUDED

- In the same view we want
- SUM of sales per Region
- AVG of sales per Customer
- Create Sales Per Customer.

```
{ INCLUDE [Customer Name] : SUM([Sales]) }
```

- Include both in a view with region

Level of Detail (LOD) expressions: INCLUDED

■ Create Sales Per Customer. \{ INClude [Customer Name] : Sum([Sales]) \}

- Include both in a view with region, but aggregate the Sales Per Customer using AVG

```
\begin{array} { l : l } { \text { iii Columns } } & { \text { AVG(! Sales Per Custo.: SUM(Sales)} } \\ { \hline \equiv ~ R o w s ~ } & { \text { Region } } \\ { \hline } \end{array}
```


WHY ?

Level of Detail (LOD) expressions: INCLUDED

Improve your Data Vis

Sales Per Customer - INCLUDE - T03

Improve your Data Vis

The trends of Sales and Avg. ! Sales Per Customer. for Region. Color shows details about Sales and Avg.! Sales Per Customer.. For pane Average of ! Sales Per Customer.: The marks are labeled by Avg. ! Sales Per Customer..

Level of Detail (LOD) expressions: FIXED

- Create Sales Per Region

```
{FIXED [Region] : SUM([Sales])}
```

- Include both in a view with region and Sales Per Region in the view
- Add State to view and interpret

Level of Detail (LOD) expressions: FIXED

- Create Sales Per Region

```
{FIXED [Region] : SUM([Sales])}
```

- Change the definition to use INCLUDE instead of FIXED
- Add State to view and interpret

Level of Detail (LOD) expressions: INCLUDE

- Create Sales Per State

```
{ INCLUDE [State] : SUM(Sales)}
```

- The calculation is placed on the Rows shelf and is aggregated as an average. The resulting visualization averages the sum of sales by state across categories.

Average of Sales by State Across Category

Average of! Sales by State for each Segment broken down by Category. Color shows details about Segment. The marks are labeled by average of! Sales by State.

Level of Detail (LOD) expressions: EXCLUDE

- EXCLUDE level of detail expressions declare dimensions to omit from the view level of detail.

Level of Detail (LOD) expressions: EXCLUDE

- EXCLUDE level of detail expressions declare dimensions to omit from the view level of detail.
- EXCLUDE level of detail expressions are useful for 'percent of total' or 'difference from overall average' scenarios. They are comparable to such features as Totals and Reference Lines.

Level of Detail (LOD) expressions: EXCLUDE

- EXCLUDE level of detail expressions declare dimensions to omit from the view level of detail.

■ EXCLUDE level of detail expressions are useful for 'percent of total' or 'difference from overall average' scenarios. They are comparable to such features as Totals and Reference Lines.

- EXCLUDE level of detail expression cannot be used in row-level expressions (where there are no dimensions to omit), but can be used to modify either a view level calculation or anything in between (that is, you can use an EXCLUDE calculation to remove dimension from some other level of detail expression).

Level of Detail (LOD) expressions: EXCLUDE

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```

average sales total per month

```
# Rows - SUM([Sales])-SUM([average of sales by month])
```


Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```

average sales total per month

Rows \quad SUM([Sales])-SUM([average of sales by month])

Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```

average sales total per month

Rows \quad SUM([Sales])-SUM([average of sales by month])

Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```

average sales total per month

Rows \quad SUM([Sales])-SUM([average of sales by month])

Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per
month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```


average sales total per month

- Build a view

Rows

- |SUM([Sales]) -SUM([average of sales by month])

Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per
month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```


average sales total per month

- Build a view

Rows

- |SUM([Sales]) -SUM([average of sales by month])

Level of Detail (LOD) expressions: EXCLUDE

- The following EXCLUDE level of detail expression computes the average sales total per
month and then excludes the month component:

```
{EXCLUDE DATETRUNC('month', [Order Date]) : AVG({FIXED DATETRUNC('month', [Order Date]) : SUM([Sales])})}
```


average sales total per month

- Build a view

```
# Rows * SUM([Sales])-SUM([average of sales by month])
```

- And With Month([Order Date]) on the Columns shelf

EXCLUDE - Average of Sales by Month

70K
shows the difference between actual sales per month over a four-year
60K period and the average monthly sales for the entire four-year period

Level of Detail (LOD) expressions: EXCLUDE

```
{EXCLUDE [Region]: SUM([Sales])}
```


Level of Detail (LOD) expressions: EXCLUDE

- ExcludeRegion calculation

```
{EXCLUDE [Region]: SUM([Sales])}
```


Level of Detail (LOD) expressions: EXCLUDE

- ExcludeRegion calculation

```
{EXCLUDE [Region]: SUM([Sales])}
```


Level of Detail (LOD) expressions: EXCLUDE

- ExcludeRegion calculation

```
{EXCLUDE [Region]: SUM([Sales])}
```

- A view that breaks out the sum of sales by region and by month:

Level of Detail (LOD) expressions: TABLE SCOPED

It is possible to define a level of detail expression at the table level without using any of the scoping keywords. For example, the following expression returns the minimum (earliest) order date for the entire table:

```
{MIN([Order Date])}
```

This is equivalent to a FIXED level of detail expression with no dimension declaration:

```
{FIXED : MIN([Order Date])}
```


Notes on dimensions declarations in LoD expressions

- For level of detail expressions, you can use any expression that evaluates as dimension in a dimensionality declaration, including Date expressions.

Note: It is strongly recommended that you drag fields into the calculation editor when creating dimension declarations, instead of typing them. For example, if you see YEAR([Order Date]) on a shelf and then type that as the dimension declaration, it will not match the field on the shelf. But if you drag the field from the shelf into the expression, it will become DATEPART('year', [Order Date]), and that will match the field on the shelf.

Notes on dimensions declarations in LoD expressions

```
With named calculations (that is, calculations that you
save to the Data pane, as opposed to ad-hoc
calculations, which you do not name), Tableau cannot
match the name of a calculation to its definition. So if
you create a named calculation, MyCalculation, defined
as follows:
MyCalculation = YEAR([Order Date])
And then you created the following EXCLUDE level of
detail expression and used it in the view:
{EXCLUDE YEAR([Order Date]) : SUM(Sales)}
Then MyCalculation would not be excluded.
Similarly, if the EXCLUDE expression specified
MyCalculation:
{EXCLUDE MyCalculation : SUM(Sales)}
Then YEAR([Order Date]) would not be excluded.
```


What next?

Top 15 LOD Expressions

https://www.tableau.com/about/blog/LOD-expressions

Interactive Data Visualization

Table Calculations

Table Calculation Types

■ Difference From, Percent Difference From, Percent From

- Difference - Current - Reference.
- Percent Difference - (Current - Reference) / Current in percentage
- Percent - Current / Reference in percentage
- Two values to consider: the current value, and the value from which the difference should be calculated
- Previous, Next, First, Last
- The reference values depend on the computation order over the table (down, across, etc.

Table Calculation Types

- Percent of Total, Percentile, Rank
- Percent of Total - computes a value as a percentage of all values in the current partition.
- Percentile - computes a percentile rank for each value in a partition
- Rank - computes a ranking for each value in a partition
- In the case of Percentile and Rank an order (ascending our descending) has to be defined
- In the case of Rank a Rank Type has to be defined: Competition (1, 2, 2, 4);

Modified Competition (1, 3, 3, 4); Dense (1, 2, 2, 3); Unique (1, 2, 3, 4)

Table Calculation Types

- Moving Calculation
- Moving Calculation - determines the value for a mark in the view by performing an
aggregation (sum, average, minimum, or maximum) across a specified number of
values before and/or after the current value
- Aggregation: sum, average, minimum, or maximum
- Values before and after.
- Previous Values
- Next Values
- Add Secondary Calculation

Table Calculation Types

- Running Total calculation
- Running Total -aggregates values cumulatively in a partition. It can do this by summing values, averaging values, or replacing all values with either the lowest or highest actual value.
- Aggregation: sum, average, minimum, or maximum
- Add Secondary Calculation

Table Calculations

- Basics
- https://onlinehelp.tableau.com/current/pro/desktop/en-us/
calculations tablecalculations.htm
- Table Calculation Types
- https://onlinehelp.tableau.com/current/pro/desktop/en-us/
calculations tablecalculations definebasic runningtotal.htm

THANK YOU!

(FACULDADE DE

Departamento de Informática, FCT/UNL Quinta da Torre P-2829-516
CAPARICA, Portugal
di.secretariado(AT)fct.unl.pt
(+351) 212948536 (direct)
(+351) 212948300 (central)
(+351) 212948500 (central)

