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Abstract

Global warming has been a reason of concern over the last decades.
The need to change the way we live, and how we can adapt to a
world with a considerable reduction of greenhouse gas emissions, is
even more clear: we have barely over a decade to change our ways
before it becomes irreversible [United Nations 2019]. In the light
of these recent news, we decided to study if there’s a correlation
between this global phenomena and natural disasters. With the help
of Tableau, we work on 7 datasets and propose interactive ways
to visualize the available information through the use of Tableau
Dashboards, allowing whoever uses these dashboards can get their
own conclusions.

1 Introduction

Earth - our dear home. It should be in the interest of all people
to take care of it and since one of the most recent dangers which
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concerns our planet is a global warning problem, everyone should
be striving to understand what this implies and what we should aim
to do.

This atmospheric phenomenon is caused by the increased amount
of carbon dioxide and greenhouse gases emission in the atmosphere
and it is proved that global temperature has risen since 1880 [NASA
]. Furthermore, we have started to see the consequences of global
warming is having on our the planet and a big change needs to
happen soon, given the time restraint and how the human life style
affects the rest of the ecosystem [United Nations 2019].

It is in the concern of many to truly understand what possible in-
terrelationships could there be between climate change and natu-
ral disasters. We believe this understanding could help change the
minds of many and how they take action.

In our work we aim to investigate whether global warming implies
that disasters will tend to become stronger and more frequent. We
also compare some observations from Nature (like CO2 emissions,
storms’ and floods’) to look for observable patterns.

Unfortunately worldwide research on the subject is difficult as long
as we don’t have access to the global data. Because of this setback,
we decided to get an overall feel of the world with temperatures
and CO2 emissions but focus on the United States when it comes
to analysing possible patterns in natural disasters, given how this
information is documented through out many datasets.

In order to study global warming and natural disasters we start by
listing questions regarding the subject, followed by a short descrip-
tion of what datasets we’ve worked with.

Before preparing any visualizations, we studied of what has been
done since there is a need to actually have some sort of an under-



standing of the science behind global warming, natural disasters
and what visualizations have already been proposed by experts in
the field.

In the end, we propose some visualizations for the data and interac-
tive dashboards that let a user get their own conclusions.

2 Research Questions

In order to understand if there is any correlation between global
warming and natural disasters, an initial step is understanding how
exactly is Global Warming affecting Earth. With this in mind, we
present the following questions:

1. How have global temperatures changed in the last years?

2. How are drastic temperature changes related to CO2 emis-
sions? Is there a pattern?

3. How are high temperatures affecting the glaciers?

Due to the easiness in finding USA related data, we next focused
on understanding the behaviour of natural disasters in the USA. We
propose the following questions:

1. Has the frequency of natural disasters increased in the last
decades?

• Has the storms’ frequency increased?

• Has the floods’ frequency increased?

• Has the fires’ frequency increased?

2. Has the intensity of natural disasters increased?

• Has the intensity of storms increased?

• Has the intensity of floods increased?

• Has the intensity of fires increased?

3 Datasets

3.1 Cumulative CO2 Emissions

A simple dataset with the cumulative CO2 emissions, from 1751 to
2016. It’s information can be summed up as:

• Entity: the name of the country or region

• Code: the FIPS identifier for the country (missing when the
Entity is a region)

• Year: the year of the CO2 measurement

• Cumulative CO2 Emissions: The cumulative amount of CO2
emission, in tones

Comprised of 62 thousand rows, this dataset contains some null
values, especially until the second half of the XX century, which
is to be expected from it’s time range. The dataset is available at
1 along with some other analysis related with CO2 and greenhouse
gas emissions.

3.2 Temperature change

Contains data about annual temperature anomalies, with the base-
line period of 1961 to 2017. It’s a dataset with 12K rows and 14
fields, such as:

1https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions

• Area: Area corresponding to the country (and area code)

• Value: the value corresponding to the temperature anomaly

Further details on the dataset can be found in the appendix B

3.3 Global Glacier Recession

The International Association of Cryospheric Sciences provided
this dataset that contains over a million observations. The most
important values of this dataset will be:

• Glacier name The name of the glacier

• Geographic latitude and longitude: coordinates of the
glacier

• Year of measurement

• Thickness: the size of the thickness in meters

• Elevation: the height of the glacier in meters

• Glacier country: country which the glacier belongs to

The dataset can be found in International Association of
Cryospheric Sciences. More information is avaiable on C

3.4 Floods

G.R.Brakenridge, at the Dartmouth Flood Observatory, aggregated
data from ”news, governmental, instrumental, and remote sensing
sources”2, from 1985 till 2017, to make this small (4.5 thousand
rows) but rich dataset about floods on a global scale. It includes
information such as:

• Country: the name of the country affected

• Detailed Location: the city or region of the country affected

• Start Date: the date in which the flood started

• Duration: duration of the flood, in days

• Main Cause: the reason why the flood happened (ex: heavy
rain)

• Magnitude: the magnitude of the flood, calculated with du-
ration, severity and affected Area

The dataset contains even more relevant details which are available
in appendix E. There is also a shapefile included alongside the data.

3.5 Storms

A dataset that contains information on hurricanes and typhoons on
the North Pacific and Atlantic area, from the National Hurricane
Center. Each occurrence is divided in six-hourly recordings and
contain pertinent information such as:

• Location: the location where the storm occurred, in coordi-
nates

• Status: the status of the hurricane (for exemple TD for a
tropical cyclone of tropical depression intensity)

• Maximum Wind: the strongest wind registered, in knots

• Minimum Pressure: the lowest pressure registered, in mil-
libars

2http://floodobservatory.colorado.edu/Archives/index.html

https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions
http://floodobservatory.colorado.edu/Archives/index.html


The time frame of this dataset is between 1851 and 2015 and to-
gether they are comprised of 75 thousand records. More informa-
tion, like metrics regarding the wind, can be viewed in the appendix
F.

3.6 USA Wildfires

This dataset contains around 180K records of USA wildfires, rang-
ing from 1992 to 2015. Holds information about day, time of day
of when it started (when it was discovered) as well as when it was
considered to be contained/controlled. With data about its’ latitude
and longitude, as wells as fire size, size class (from A to G) and
even the cause of said fires, we can truly get a feel of the magnitude
of these wildfires.

In total, this dataset has 39 fields and regarding specific fire infor-
mation we have:

• Fire IDs: fields regarding different a fire’s identifiers

• Fire location: latitude, longitude, state and county

• Date: date, time, day of year and year regarding the discover
of the fire and also day and day of the year of when the fire
was controlled/contained

• Cause: code and description for the (statistical) cause of the
fire

• Other

A more detailed information about the dataset’s fields can be found
in appendix G and it is available on Kaggle.

3.7 USA State Information

This dataset was obtained with R and its’ dataset packages. The
main purpose of this dataset will be to normalize the 3.6’s dataset.

• Area : information regarding a state’s ara, in square miles

• Region: a state name

• State abb: a state’s abbreviation

• Other: information about life expectancy, illiteracy in the
1970’s. income, population, etc

4 State of the art

One key aspect in presenting a good visualization is knowing what
has already been done in terms of visualizations related to our work.
This step is important since it does help in understanding what
works and what doesn’t. But before analysing any visualization,
it’s very important to understand what’s the science behind those
visualizations and also what we’re aiming to answer with our own
visualizations. Due to this, we divide the state of art in two subsec-
tions:

1. Understanding the science behind climate change and natural
disasters

2. A study of what visualizations have been done in the field of
climate change and natural disasters

4.1 The Scientific Background

It’s thanks to CO2 that planet Earth has surface temperatures that
allow life as we know it. CO2 is also known as the greenhouse gas
since it emits and absorbs thermal radiation, creating what we call
the greenhouse effect [Ritchie and Roser 2019]. Unfortunately, the

raise of CO2 emissions caused by the modern human lifestyle has
now disturbed the cycle and led to what we call global warming.

The Industrial Revolution changed the world in many ways, from
the way of living of the general population to, unfortunately, the
start of the rise of global temperatures. Any change in the average
global temperature means a change in the received and radiated en-
ergy of the planet. When taken into account the amount of heat it
takes to warm the oceans, the rise of 0.8o Celsius (since 1880) is
very worrisome [Earth Observatory ].

Given the concerns of this rise in temperatures, one wonders if we
can already observe its impact, more specifically, if we can observe
a change in natural disasters, like fires, floods, storms, etc. and
question their correlation to the global warming.

Fires are mostly influenced by fuels, climate-weather, ignition
agents and people [Flannigan et al. 2006]. Thus the impact of cli-
mate change on the wildfires’ increase in frequency (if there’s an
increase) and in intensity is put into question. Since changes in
temperatures are easily observable (and they do play a big role on
the activity and prevision of wildfires) [Yang et al. 2017] proposed
methods to improve predictive services on wildfires using timely
weather information.

It is projected that the increase of summer drying over most mid-
latitude continental interiors (and associated risk of drought) will
not only decrease water resources (in quantity and quality) but
also increase the risk of forest fires[Aalst 2006]. Additionally, in
the USA. the seasonal length3 of wildfires has increased signifi-
cantly by 64% (78 days) when comparing 1970-1986 with 1987-
2003[Westerling et al. 2006].

Besides the decrease in winter precipitation, summer droughts are
a given a to happen and these droughts affect the flammability of
forests’ fuels. It has also been discussed how early snow melting
can cause longer dry seasons, resulting in bigger opportunities for
large fires to occur [Westerling et al. 2006].

Similar to fires, glaciers are also influenced by the increase of the
Earth’s average temperature [M. Ruby, C. O’Neill 2019]. The long
term measurement of glaciers’ balance changes shows that world’s
ice resources are rapidly decreasing and in all cases, long records
have shown a general recession [Krimmel 2002]. In the United
States, Alaska’s glaciers lose about 75 billion tons of ice each year
and over the last 40 years thinning has been on the order of 50 to
100 meters at lower elevations of glacier occurrence and about 18
meters at higher elevations.[Dennis O. Nelson 2019] It was proven
that glaciers in western North America, excluding Alaska, are melt-
ing four times faster than a decade ago.

As the observation frequency is increased, most of the records
show evidence of the general retreat, however, glaciers placed side
by side geographically sometimes behave differently. It may be
caused by complex interactions between the effects of elevation,
latitude, exposure, basin area-elevation distribution, the variables
of climate and the individual glacier’s dynamic-response character-
istics [Krimmel 2002]. Only a few glaciers are actually advancing
(in locations that were well below freezing, and where increased
precipitation has outpaced melting) [PRESS 2009].

In 1998, [Doornkamp 1998] considered what could be the causes
for the natural hazard that are floods. While there was already a talk
about the effects of global warming on the frequency and magni-
tude of floods, these were not strong enough to justify the changes.
[Doornkamp 1998] instead attributed much more responsibility to
other human causes like man-induced subsidence, the supply of silt

3Seasonal length is the time between first wildfire discovery (reported)
and the last wildfire



on the coastal areas and the occupancy of floodable land and even
the creation of flood defences which produced unexpected negative
effects.

In a little less than decade the situation seemed to change: the
United States suffered an unusual number of hurricanes and the In-
tergovernmental Panel [on Climate Change 2007] indicates that in
response to global warming, there will be a surge in hurricanes and
sea the sea level rise. [Mousavi et al. 2011], in response to these
projections, studied the impact of these changes. It is important to
note that wind storms or hurricanes and coastal floods have a high
chance of occurring at the same time, so it’s valid to assume that a
rise in hurricanes will lead to a rise in coastal flooding.

[Mousavi et al. 2011] concentrated their analysis on a hot-spot for
high coastal surges in the United States and the Gulf of Mexico
(more specifically the city of Corpus Christi). By choosing three of
the major hurricanes of the area’s history, they ran simulations to
evaluate potential future floods due to hurricanes in the next eighty
years. They concluded that if these global warming projections
prove to be true, hurricanes and flooding will be substantially more
intense and damaging to humans, both economically and socially.

4.2 The Visualization Background

Given the importance of climate-change and the greenhouse effect,
visualizations help the general public truly understand the science
behind it.

When it comes to visualizing temperature information, this is a
theme that has been widely done in various ways. Probably one of
the most well known temperature visualizations is the temperature
mapping to color, all over the world. [NASA/GISS 2019] presents
this in a timeline, starting in 1884, ending in 2018 (figure ??).

Figure 2: Global Temperature: Time series 1884 - 2018 by
NASA/GISS

While this type of visualization does show change overtime, it gives
a very ”general” information since the user can’t directly interact
with the visualization besides browsing the years’ timeline.

On the other hand, in a more interactive way, [InMeteo 2019] de-
veloped a very interesting and dynamic application about meteo-
rological weather over the whole world. This application lets the
user choose exactly what variable (temperature, wind, snow cover-
age, etc) they want to map with color and also lets the user zoom
in a specific city, allowing the visualization of the specific tempera-
ture. The usage of color to map different variables, according to the
user’s will and the possibility of city’s details are important aspects
to take into mind when planning an interactive visualization.

Even though [InMeteo 2019] makes for a very interactive visual-
ization, it does not allow for a easy or observable comparison of
temperatures.

One thing are temperatures and another thing are temperature
anomalies. When it comes to analysing temperature changes over
the years, temperatures anomalies are more important to study than
absolute temperatures [NOAA 2019]. This is because a tempera-
ture anomaly is the difference from an average temperature (average
of 30 or more years) and with an anomaly we can clearly see when
it was warmer or colder than the average.

The visualization of temperature anomalies proposed by [Lipponen
2019] shows the different anomalies values over the years, where
bigger blue circles indicate colder than average temperatures and
bigger red circles hotter than average. Even if we can quickly cap-
ture what the visualization is trying to convey (global warming is
happening), the countries representation is not the best: it gives the
user geographical information (countries’ names) but it is difficult
to visualize which countries are exactly colder/warmer since read-
ing a country name is not the same as seeing it in a map.

With this in mind, in Chapter 5 we propose a mix of the typical tem-
perature information provided by [NASA/GISS 2019] with temper-
ature anomalies, where the user will control which year they want
to visualize.

Regarding CO2 emissions, [Ritchie and Roser 2019] present a map
of the world, also with a timeline, which makes it possible to clearly
see the start of the Industrial Revolution in Britain and its’ pro-
gression over the world. The problem with this visualization is the
choice of colors for the mapping of CO2 quantities, since between
50 million tonnes and 5 billion tonnes are not easily distinguishable
(Figure 5).

Another look at CO2 emissions is its’ division by source (Figure 7b)
and annual emissions by world regions (Figure 7a). While these two
visualizations present very interesting information by themselves,
maybe it would be interesting to see how we could visualize the
annual CO2 emissions and their relation to temperature changes.

Concerning wildfires, [Gonçalves et al. 2019] (Figure 6 developed
a special a new data visualization interface with the main goal of
providing new, interesting and informative ways of displaying Por-
tugal’s fire data. These visualizations give a good understanding of
what is happening all over the country, and when it comes to the
district, one can specify if they want to see also details about fire
causes. But when divided for each district, the graphic continues
on showing the same graphic on the right (Figure 6). It’s true that
this graphic has information about every district but an alternative
way would be to show the total burnt area (by cause or not) over
the years, for that district. In the Proposal (5) we take this idea and
apply it to the USA wildfires.

There has been already some work done with the dataset we’re us-
ing for wildfires on Kaggle platform, more specifically, [Walters
2017] compares the number of wildfires by state and afterwards
normalizes the data so it’s possible to directly compare wildfires
across states. The need for normalization comes because states vary
a lot in terms of areas and normalization is used to help fully under-
stand if one state has a truly significant larger amount of fires when
compared with another. This information by state will be interest-
ing to correlate with the cause behind the fire.

When it comes to floods we found an interesting visualization from
the Federal Emergency Management Agency [FEMA ], about the
historical risks and costs of floods . It’s composed by a map graph
of the selected state, a 2D line graph with about the flood events
over the years and a bar chart regarding the economic cost of floods
in that state.

We find that the relation between the map graph and the line graph
works really well, and the latter being split into counties easily al-
lows us too find patterns in the data. Its’ weak point could be the



(a) Ventusky zoomed out (b) Ventusky application zoomed in Portugal

Figure 3: Two possible temperature visualizations with Ventusky

Figure 4: Temperature anomalies 1880-2017 by country.No matter
how you visualize it, it looks scary! by Antti Lipponen

overlapping of lines, but the interaction with the map allows us to
intuitively select the desired county and look at the details on the
line graph. It would be interesting if there was a way to look at the
entire US map at one time, in order to quickly find the states which
are hot spots for this kind of natural hazard, but we understand that
it would probably not translate well in the line chart.

When looking through hurricane data visualizations, one will come
across many related with the trajectory or the wind direction in a
map graph. However, we found this peculiar, at least the for the
subject at hand, visualization regarding an historical overview titled
”Thirty years of Atlantic Hurricanes” by [Canipe ]. This yearly
summary contains small polygons which represent the storms, color
coded by category. Those ”noteworthy” enough also have a small
label with their name and maximum wind speed.

The graph requires an initial processing of the visual concepts but
once that is achieved its’ biggest strength is evident: it serves as a
great tool to find patterns throughout the years. For example, one
can clearly notice that there is a concentration of occurrences in the
middle of the year, which is most likely due to the higher tempera-
tures. It suffers, however, a grave problem of overlapping when one
wants to look into the details of a specific hurricane, especially due
to the fact that there isn’t a click function to hold the information.
We would like to try to reproduce this graph on Tableau but attempt
to solve the problems we just referred.

Like we said in the Datasets section (section 3), our plan is to com-
bine the sea level dataset with other like the one about the glacier,
so we would like to discuss a visualization that has a combination
of elements that we are studying. However we came across an in-
teresting self contained animated graph by [Pluck ], which illus-

Figure 5: Cumulative carbon dioxide (CO2) emissions represents
the total sum of CO2, emissions since 1751, and is measured in
tonnes.

(a) Portugal’s total burnt area, from 2007 to 2017

(b) Burnt area by district, 2017

Figure 6: ’Portugal without fires’, a data visualization system to
help analyse forest fire data in Portugal



(a) Annual carbon dioxide (CO2) emissions measured in billion tonnes (Gt) per year
(b) Annual carbon dioxide (CO2) emissions from solid fuel; liquid; gas; cement production
and gas flaring, measured in tonnes per year.

Figure 7: CO2 emissions

(a) Wildfires by state

(b) Normalized data by state- Wildfires per square mile

Figure 8: Analysis on USA Wildfires, Kaggle dataset

trates the sea level rise over the years. Every decade another layer
is added which enable us to process the data in a relative way to the
layers of previous decades. However, this animation at first seemed

Figure 9: The state of Florida with it’s counties color coded by
the amount of floods since 1996, along with a line graph of the
occurrences withing the same time frame.

really appealing because of it’s resemblance with a wave, we later
found out they are actually the monthly values being added. An-
other point, which is not necessarily a critical error, is that the color
range doesn’t make the distinction between decades clear enough.

5 Proposal

ur proposal can be clearly divided in two parts. On the first one
we will try to build visualizations that answer our initial set of
questions regarding CO2, temperature and glaciers. On the sec-
ond we will explore the natural disasters’ datasets both in isolation
and combined with others, in search of not only the questions of 2
but also new ones, some of which were introduced by the research
made for the State of the Art.

Like it has been explained before (in 4), temperature anomalies are
better than absolute temperatures, thus the analysis of temperature
changes required a preparation of both the Cumulative CO2 emis-



Figure 10: A 12-year segment of the chart with its’ caption. As
mentioned in the text, there is a clear concentration of occurrences
in the middle of the year.

sions 3.1 and Temperature Changes 3.2. These datasets were joined
by Year and Country/Entity/Area so it could be possible to analyse
the correlation between these two phenomena over the years, for
each country.

A problem we faced with this dataset was some inconsistent names
for Russia, were it divided into USSR and Russian Federation. Here
we decided to combine records with this problem with country
name as ”Russia”. However, we acknowledge this is not the cor-
rect way to deal with these types of problems in the data, but for the
purpose of this project, we opted for a simple solution in order to
focus on other aspects.

A similar problem occurred with records labeled as ”Africa” and
”Americas”. For these records we decided to remove from the
dataset, since we already had data for each country in these re-
gions/continents.

Inspired by [Lipponen 2019]’s visualization, we chose to map tem-
perature anomalies to color. But, contrary to [Lipponen 2019]’s,
where we couldn’t fully comprehend the temperature variation from
country to country, we also used a choropleth map since visualizing
a region is always better than mentally checking where it is (in the
world).

To enhance the information provided by the latter, we chose to add
a complementary line chart with anomalies plotted from 1992 to
2017. With this addition, a user can chose a point in the graph
(which represents a year) and it will change the information of the
choropleth map by filtering the anomalies by the chosen year. The
combination of these two different visualizations, the user will ben-
efit from a better understanding of how temperatures have changed
over the years, as well as how it has affected each country individ-
ually.

As for the correlation between CO2 emissions and temperature
anomalies, we opted to graph a scatter plot with these two variables.
We mapped the average of anomalies to the y-axis, the average of
cumulative CO2 emissions to the x-axis and years to detail. The
years were mapped to the visual variable color, in order to analyze
the possible correlation of the two parameters across time.

These three visualizations, all combined together (Figure 11, form
an interactive view of anomalies, CO2 emissions and their possible
correlation.

(a) Dashboard without a filter.

(b) Dashboard filtered by year.

Figure 11: Dashboard with interactive views of temperature
anomalies and CO2 emissions.

After temperatures and greenhouse emissions, we took a look at the
geographical distribution of the glaciers data, which is shown in ??.
To achieve it, we created a point map, where each point represents
a glacier from our dataset. Additionally, we mapped temperature
anomalies to color so that we could show glaciers that are exposed
to the biggest temperature anomalies.

Figure 12: Dashboard1

The second dashboard we built aims to showcase the glaciers’ prop-
erties, mainly their thickness and elevation. We made two visual-
izations based on point maps to represent those two features, both
in color and size. The last visualization is an area graph meant to
show how the elevation and thickness correlate.

Still in the topic of glaciers thickness, the last dashboard is consti-
tuted by two visualizations: the first one, a choropleth map repre-



Figure 13: Dashboard2

senting the average thickness of each country glaciers; the second
one, a historical overview of the average values. When selected a
country on the first visualization, the second one is filtered to show
the selected country’s values. When a point is selected on the sec-
ond one, it shows all the countries who had glaciers recorded on
that year.

Figure 14: Dashboard3

Another dashboard touches on USA Wildfires information. In-
spired by [Walters 2017]’s work, we decided to work with fires’ du-
ration, which could be related to a fire’s intensity. To get this infor-
mation, we used the fields DISCOVERY DATE and CONT DATE
to calculate the total number of days a fire was burning . Unfortu-
nately, both these fields were in a Julian data type, making it nec-
essary to convert it to a dd/mm/yy date and only after this step we
were able to calculate burn time by:

Burnt = Contained−Discovered

This calculation ended with missing values because some fires have
no registration of the date they were contained. We decided to ex-
clude these cases and map the remaining results to a choropleth
map, to be then filtered by year and fire cause. Furthermore, with
the new calculated field, we wondered if there was any correlation
between burn time and the overall fire size.

Sadly, after using a scatter plot with these variables, we couldn’t
visualize a perceptive pattern in the data. To overcome this, we
used bar charts of Average Burn Time and Average Fire Size for fire
causes and plotted them side by side.

To visualize a possible correlation with temperature anomalies and
wildfire data, we started by calculating the global average tempera-
ture anomalies, so it wouldn’t be separated by years. This step was

necessary because otherwise the join with the 3.6 dataset would re-
sult in a lot of repeated information (every year for every country)
which, when joined with the wildfires dataset, would have serious
repercussions on performance.

After combining this data (by the Year fields), we created two dif-
ferent scatter plots: average global anomalies and average burn
time, from 1992 to 2015; average global anomalies and average
fire size, from 1992 to 2015.

In contemplation of possible seasonal patterns and the causes be-
hind fires, two different barcharts were plotted. Both bartcharts are
divided by fire cause but differ in the way they show information,
namely, one shows a monthly distribution of fires and the other a
comparative yearly overview of fire causes.

Motivated by the visualizations developed by [Gonçalves et al.
2019], we combined this dataset’s visualizations into one dashboard
(figure 15) , where by selecting a state (on the average burn time
choropleth map) the other 3 visualizations are filtered by that state.
Another filtering option, with analogous effect, is selecting a year
in the scatter plots. The user may also choose to select a cause and,
in the choropleth, it will be shown the average burn time of fires
originated by the chosen cause.

Also in reference to [Walters 2017]’s work, we understood the need
to normalize data. Every state in the United States has a differ-
ent area so, to make comparisons between states normalization is
needed. To achieve this visualization, we joined the 3.6 and 3.7 by
the fields STATE and state.abb.

After normalizing the data, we were able to have information re-
garding the number of fires per square mile, from 1992 to 2015.
This value is calculated at the state and year level, which makes it
possible to form a choropleth map.

Firespersquaremile = StateF ires/StateArea

To boost this visualization, we thought it would be interesting to
visualize big fires and their corrrelation to their cause, but instead
of using barcharts like before, we built a density map for fires that
had a size equal or bigger than 100 acres (with fire class D - G).

To complement these two maps, we graphed the number of fires
over the years, separated by fire cause, with the purpose of having
an overall view of not only the distribution of number fires over all
years, but also an overview of what caused said fires.

These three visualizations were put together in a dashboard (figure
16)and by clicking on the graph of fires over the years, it will filter
the other two maps by the selected year.

Regarding the storms dataset, after we united the Atlantic and Pa-
cific files into one and after we analyzed it’s fields, we decided to
approach the intensity aspect by relating the strongest winds with
the lowest pressures. We also learned from the metadata that the
hurricane status is classified by it’s wind intensity, so we thought
that it would be a nice addition to the visualization. We also took
advantage that for the same storm there might be multiple rows de-
scribing it at different times, by enabling the user to click any storm
in order to highlight all of it’s stages.

We then addressed the frequency question, starting by checking
what the monthly distribution of storms looks like, and if there is a
well defined ”hurricane season” across the board. We achieved this
by relating the amount of unique storm id’s with the months, in a
line chart. On top of this we decided to color code the line chart
with the hurricane status, so that when the user clicks on a certain
type of storm, the occurrences with that status will be highlighted



(a) Dashboard with an interactive analysis on the Wildfires dataset

(b) Dashboard filtered by year (2015)

(c) Dashboard filtered by year (1997) and cause (Lightning).

(d) Dashboard filtered by year (1997), cause (Lightning) and state (Oregon).

Figure 15: Dashboard regarding USA Wildfire data and Average
Global Temperature Anomalies.

(a) Dashboard with an interactive analysis on the Wildfires dataset

(b) Dashboard filtered by year (2006)

Figure 16: Dashboard regarding USA Wildfires and causes over
the years.

on the scatter plot. A user can also select a specific point on the
scatter plot and a monthly distribution of the selected storm’s year
will be presented.

We also noticed our dataset contains information regarding the
storm’s coordinates. Since we already established that it’s possi-
ble to establish a storm’s ”history” from it’s records, we decided to
build a map visualization with the paths of the natural hazards. We
inserted the coordinates into the map and united them with the day
of the observation. To represent the intensity of the hurricane we
initially planned on using the status again, but encoding the maxi-
mum wind with both size and color provided better looking outputs.
When the user clicks a point of the hurricane it produces the same
feedback as when a point on the scatter plot is selected and, when a
point is selected on the scatterplot, the year displayed on this visu-
alization will be the year of the selected occurrence.

Lastly, we provide an overview of the dataset, over it’s time range.
We decided to simply stack the evolution of the number of oc-
currences, average strongest winds and average lowest pressure,
through the last 17 decades. This visualization does not support
any interactions with the others so it can serve as a constant refer-
ence point.

In the state of art we mentioned that when it comes to floods, hurri-
canes or storms in general are likely to have happened somewhere
in the same time frame. Since we planned to start by looking into
the datasets isolated, before comparing their values together, we
took advantage of the Main cause field to try to find the yearly dis-
tribution of flood causes and overall what are the most common
ones.

To achieve this we built a stacked bar chart, where each bar corre-



Figure 17: Dashboard with interactive view of the relation be-
tween hurricane properties and their monthly and yearly distribu-
tion, along with a map that shows hurricane path in a certain year.

Figure 18: When a specific storm is chosen it’s status and path can
be seen on the other graphs.

sponds to the total records of a specified year, and the length of a
color represents the percentage of occurrences with a certain cause.

For the top causes floods we did a normal bar chart relating these to
the number of records. We also decided to add the average duration
of these hazards to the color in order to see if there is any correlation
with their frequency. In terms of interactivity the user can select any
cause to highlight it in both graphs.

Finally we added a simple choropleth map with the total number
of records from each country to provide an overview of the most
affected places on earth. To increase compatibility with the first
view we filtered out any value who’s date was missing. This way,
we can let the user select any country to filter out the information
on the two other views accordingly.

For both of these visualizations we had to modify the majority of
values on the main causes field. This was because they were too
specific and didn’t have a count big enough to justify increasing
the visual complexity, in order to be grouped up by just their most
primitive type like ”Heavy Rain” or ”Tropical Storms”. We also
tried to take advantage of a shapefile included with this dataset,
which covered the are of the floods registered, but unfortunately we
haven’t found a way to take advantage of this file without sacrificing
substantial visual clarity.

In the State of the Art we learned about the frequency of floods
occurring along with storms. To dive deeper on this subject we
decided to cross our datasets to see if there were any visible corre-
lation between these two natural hazards. We elaborated two ques-
tions to analyze any possible links between the two: are there a vis-

Figure 19: Dashboard with interactive view of the relation between
hurricane properties and their monthly distribution.

Figure 20: When a flood cause is selected its highlighted in both
graphs.

ible correlation between the number of hurricanes and floods and
is there any similarity between the intensity of the flood and the
strength of the storm winds along the months of the year?

To answer the first question we built three visualizations of which
two correlate the number of occurrences with the years. The first
one does this in an indirect matter, it shows the distribution of the
number of occurrences, from 1984 to 2015, with a simple line chart.
The second one diver more deeply into the correlation analysis,
with a scatter plot of the same values as the last visualization, we
also added a trend line easily convey the presence, or lack of, a link
between hurricanes and floods. The user can interact with these
visualizations by selecting a point of interest, which will then high-
light it’s correspondent value on the opposing graph and highlight
the year on the line chart.

The last visualization which approaches the relation between the
number of occurrences of these two hazards is a monthly distri-
bution analogous covers to the one made for the storms dataset,
we speculate that if there is a ”hurricane season”, according with
the pre-established supposed relationship between floods and hur-
ricanes, there should also be a ”flood season”, or at least an interval
coincident with the storm’s where floods occur at an higher rate.

The second question was inspired by a visualization from the
storms dashboard which showed the monthly distribution of storms
along the months of the year, color coded by their status. In this
case, we wanted to see if the strongest winds coincide in the same
months as the most intense floods, so we did another line chart with
their monthly distribution.



Figure 21: Dashboard with interactive view of the relation between
storms and floods, across multiple metrics.

Figure 22: When a specific year is selected on one of the views, it
is also highlighted on the opposite view.

6 Conclusions and Final Remarks

The visualizations about CO2 emissions and temperature anoma-
lies confirm what we were already expecting: CO2 and changes in
temperatures are correlated. In the scatter plot from figure 11a we
can clearly observe how, as the years passed by, CO2 emissions and
temperatures increased. Another clear observation is how tempera-
tures are getting warmer over the years.

Even with the strong correlation between CO2 emissions and in-
crease in temperatures, we can’t as strongly visualize a correlation
between temperature anomalies and fires’ duration, as well as fire’s
size. Nonetheless it’s possible to see how recent years have bigger
and longer fires.

With the wildfires’ dashboards it is also possible to draw some ba-
sic conclusions about fires, namely, how Lightning seems to be the
main cause behind the biggest and longest fires. With the monthly
overview, we recognize lightning’s seasonality in summer time (
figure 15). Also, when selecting the different years in the dashboard
in figure 15 it’s possible to see the average burn time increasing in
all states

While we hoped to see strong correlations between summer and
bigger numbers of fires, this isn’t something we can conclude from
the visualizations we presented.

Addressing the fires’ intensity question, we can’t give any solid an-
swers, because of its’ relation to factors we don’t have present in
our data, such as flame length and flame heat.

By analysing the graph about the number of fires over the years, un-
fortunately, we can’t also draw any conclusions about the increase
of fires’ frequency.

From the hurricanes dashboard we can conclude that there is in
fact, as expected, a strong correlation between the the wind inten-
sity and storm’s status. Two distinct categories can be identified in
the first visualization of 10, clearly separated by a wind strength
threshold. Above it there are almost exclusively Hurricane class
storms and, below it the remaining values. In the lower cluster one
can also identify strict thresholds separating the different classes,
with the only exception being extratropical cyclone storms, which
are evenly distributed along this section. Regarding the correlation
between wind and pressure, although it’s not as strong as the one
between wind and status, one can still identify that these seem to
be, in general, inversely proportionate, especially for the Hurricane
storm status.4

We also find a clear answer to the question of ”is there such thing as
hurricane season?” and it’s a resounding yes, as it can be seen on the
”Occurrences by Month”, there are close to none storms recorded
from December to April when compared with the period between
May and November, with a clear peak in September.

But have hurricanes become more frequent in the last years? Our
data seems to indicate so, from 1940 to 1970 there has been large
increase in hurricane numbers. This increase stabilized in the fol-
lowing decades, which leads us to believe that, even though storms
have become more frequent, that high increase could be linked with
better tracking and recording of these natural hazards in those three
decades. Regarding the intensity of storms, which we already con-
cluded has a clear link between minimum pressure and wind in-
tensity, there seems to be a slight decrease in the maximum winds
recorded and a very big increase in minimum pressure, which could
again be attributed to better equipment being developed to record
this type of parameter.

We set out to find the main causes of floods throughout the years in
this natural disaster’s dashboard. We can clearly identify severe rain
(heavy rain, torrential rain, monsoonal rain) as the leading cause of
floods around the world. These events could be linked with storms
but unfortunately we don’t have the information to conclude the
cause of the extreme rainfall events, so there is no way we can con-
fidently link the causes of floods with climate change. We can how-
ever affirm that monsoonal rains cause the longest floods, with an
average twenty-one day duration.

In the dasboard that crossed the floods and hurricanes dataset we
were aiming to find a correlation between these two occurrences,
which would be corroborated by what we learned on the State of
the Art. However, the results were mixed.

On the monthly distribution view we can very clearly see that ”hur-
ricane season” and ”flood season” occur almost simultaneously,
since they have very similar distributions. On the two other views,
which correlate the number of records with along the years, we
were not able to draw any strong conclusions. Both had small sim-
ilar patterns but these were not prominent enough for us to declare
any correlation along those parameters. This divergence of values
could be caused due to the lack of values on the floods dataset com-
pared to the hurricane’s, which would justify why their monthly
distribution is so close but yearly no patterns are noticeable.

Lastly, we were also unable to conclude anything about the correla-
tion between the strength of storms’ winds and floods’ magnitude,

4In the last iteration of this report we presented a version of this visual-
ization that was using the sum of maximum winds and the sum of minimum
pressures, as axis. This was not our intention, we wanted the absolute val-
ues of each point and not a cumulative version of these. This change was
extremely impactful to our interpretation of the data, since it provided two
very different visualizations.



if anything, our visualization seems to show that these have oppo-
site peaks. Since we already learned from the storms’ dashboard
that there are very few storms in January and February, we can con-
fidently say that the high values for average wind strength, in these
two months, are probably due to some strong outlier storms.

A subject of study was to check the influence of the temperature on
the glacier area. Our goal was to check if higher moving average
values by year have more powerful and visible impact on glacier
melting. What was mentioned in the State of the Art (4) is that the
glaciers are sensitive to the increase in global temperatures. How-
ever, with the presented data, we can’t clearly confirm this thesis.

The first step was the confrontation of the Global Glaciers Reces-
sion dataset with the Countries temperature anomaly dataset. As
it is shown in the 12 and 14 the northern hemisphere has higher
temperature anomalies than the south one, but both are under influ-
ence of positive temperature anomaly. Most of the glaciers exist in
the areas where yearly average is significant. That leads us to the
question how exactly temperature changes affect the glaciers.

Through the investigation of the datasets, we have discovered that
despite undeniable increase in global temperatures and global ice
thickness average has increased. That measure is not clearly the
opposite to the mentioned state of the art thesis (which could be
i.e comparison of global ice caps tonnage, what was unattainable
because of the lack of the data), however it shed some light upon
the matter of global warming.

13 shows the average ice thickness by average anomaly temperature
through years. The data is sundry and unbalanced, from countries
with just one entry (i.e Mongolia) to the countries with rich his-
tory of observations (Norway, Switzerland). The results, likewise
the data, vary a lot. In the USA, Canada or Antarctica we can ob-
serve rising tendency of the average ice thickness, with the opposite
i.e. in Switzerland,Italy or Greenland. Nevertheless, global level of
glacier thickness is rising.

We pondered in some possible explanations for this phenomena in
the data, but it’s important to emphasize that it’s only a speculation.
First of all, higher yearly temperature don’t have to signify warmer
winters. Overall average is positive, but it may be caused by higher
summer temperature increase than winter temperature decrease.

Another potential reason may be the fact that national temperature
data, may not efficiently reflect the real temperature changes near
the glaciers. I.e. in China where numerous glaciers are located
on the western part of the country in high, cold mountains [Krim-
mel 2002], while most of the population and industry sector units
occupy flat, eastern China. There is a concern that average tempera-
ture would be disrupted by the observations from warmer, east side.
If so, the average of national temperature anomaly may be higher
from the real glaciers temperature.

There are a few explanation of the results, but they are not confirm
(because of lack of data) and are not the main purpose of the project.

13 shows comparison of ice elevation and ice thickness. Higher
elevation usually means less ice. Mountain areas are not able to
carry much ice because lack of space. The biggest ice clusters are
placed relatively close to the see level. What may be interesting is
influence of sea currents on the ice caps, but we couldn’t fulfill this
study with the data we have.
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A Cumulative CO2 emissions, 2016

Entity: String
Code: String
Year: Integer
Cumulative CO2 Emissions: Decimal
Number of Rows: 62000
Source: Cumulative CO2 emissions, 2016

- Our World in data

B Temperature change

Field Description
Area String
Value Decimal number
Year Integer
Source Temperature Change - available

C Glaciers

Glacier id: String
Latitude: Geographic
Longitude: Geographic
Glacier name: String
Thickness: Meters
Elevation: Meters
Size: 1300000
Source: International Association of Cryospheric Sciences

D Global Mean Sea Level Trend

Year: Integer - Date
Fraction of the Year: Decimal
Smoothed GMSL: Decimal - Millimeters
Size: 960
Source: GMSL - NASA

E Global Active Archive of Large Flood
Events

Country: String
Detailed Location: String
Start Date: DD/MM/YYYY
Duration Integer
Main Cause: String
Magnitude: Decimal
Size: 4500
Source: Dartmouth Flood Observatory

F Hurricanes and Typhoons, 1851-2014

Latitude: Geographical
Longitude Geographical
Status: String
Maximum Wind: Integer - Knots
Minimum Pressure: Integer - Millibars
Size: 75000
Source: National Hurricane Center

G 1.88 Million Wildfires

Fire IDs: String
Longitude Geographical
Latitude: Geographical
State: String
County: String
Discovery Date: DD/MM/YYYY
Contain Date: DD/MM/YYYY
Fire Year Integer
Cause: String
Fire Size: Acres
Cause: String
Size: 180000
Source: USA Wildfires - Kaggle
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